Integrated CO2 Capture and Utilization Using Non-Thermal Plasmolysis

نویسندگان

  • Matthew Moss
  • Daniel G. Reed
  • Ray W. K. Allen
  • Peter Styring
چکیده

In this work, two simple processes for carbon dioxide (CO2) such as capture and utilization have been combined to form a whole systems approach to carbon capture and utilization (CCU). The first stage utilizes a pressure swing adsorption (PSA) system, which offers many benefits over current amine technologies. It was found that high selectivity can be achieved with rapid adsorption/desorption times while employing a cheap, durable sorbent that exhibits no sorbent losses and is easily regenerated by simple pressure drops. The PSA system is capable of capturing and upgrading the CO2 concentration of a waste gas stream from 12.5% to a range of higher purities. As many CCU end processes have some tolerance toward impurities in the feed, in the form of nitrogen (N2), for example, this is highly advantageous for this PSA system since CO2 purities in excess of 80% can be achieved with only a few steps and minimal energy input. Nonthermal plasma is one such technology that can tolerate, and even benefit from, small N2 impurities in the feed, therefore a 100% pure CO2 stream is not required. The second stage of this process deploys a nanosecond pulsed corona discharge reactor to split the captured CO2 into carbon monoxide (CO), which can then be used as a chemical feedstock for other syntheses. Corona discharge has proven industrial applications for gas cleaning and the benefit of pulsed power reduces the energy consumption of the system. The wire-in-cylinder geometry concentrates the volume of gas treated into the area of high electric field. Previous work has suggested that moderate conversions can be achieved (9%), compared to other non-thermal plasma methods, but with higher energy efficiencies (>60%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of carbon dioxide capture from hydrogen using the thermal pressure swing adsorption process: Central composite design modeling

In this study pre-combustion capture of carbon dioxide from hydrogen was performed using a 5A zeolite adsorber. A one column thermal pressure swing adsorption (TPSA) process was studied in the bulk separation of a CO2/H2 mixture (50:50 vol%). The adsorption dynamics of the zeolite bed were investigated by breakthrough experiments to select the suitable range for operational factors in the desig...

متن کامل

Adsorption Performance Indicator for Power Plant CO2 Capture on Graphene Oxide/TiO2 Nanocomposite

This study presents the adsorption performance indicator for the evaluation of thermal power plant CO2 capture on mesoporous graphene oxide/TiO2 nanocomposite. To begin, this adsorbent was synthesized and characterized using N2 adsorption-desorption measurements (BET and BJH methods), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microsc...

متن کامل

The Effects of Electricity Boiler on Integrated CCHP-Thermal-Heat Only Unit Commitment Problem Based on Hybrid GA Approach

Combined cooling, heat, and power (CCHP) units can be integrated with conventional separate cooling, heat, and power production units to meet demands. The goal of this study is to develop and examine a hybrid GA-heuristic optimization algorithm for solving the unit commitment problem for integrated CCHP-thermal-heat only system with considerations for electricity boiler. When environmental emis...

متن کامل

Solid Adsorbents for Low-Temperature CO2 Capture with Low-Energy Penalties Leading to More Effective Integrated Solutions for Power Generation and Industrial Processes

*Correspondence: Yuhan Sun, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Zhangjiang, Pudong, Shanghai 201203, China e-mail: [email protected] CO2 capture represents the key technology for CO2 reduction within the framework of CO2 capture, utilization, and storage (CCUS). In fact, the implementation of CO2 capture extends far beyond CCUS since it will link th...

متن کامل

Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas-liquid laminar flow with subsequently providing a wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017